The evolution of mutation rate in an antagonistic coevolutionary model with maternal transmission of parasites.
نویسندگان
چکیده
By constantly selecting for novel genotypes, coevolution between hosts and parasites can favour elevated mutation rates. Models of this process typically assume random encounters. However, offspring are often more likely to encounter their mother's parasites. Because parents and offspring are genetically similar, they may be susceptible to the same parasite strains and thus, in hosts, maternal transmission should select for mechanisms that decrease intergenerational genetic similarity. In parasites, however, maternal transmission should select for genetic similarity. We develop and analyse a model of host and parasite mutation rate evolution when parasites are maternally inherited. In hosts, we find that maternal transmission has two opposing effects. First, it eliminates coevolutionary cycles that previous work shows select for higher mutation. Second, it independently selects for higher mutation rates, because offspring that differ from their mothers are more likely to avoid infection. In parasites, however, the two effects of maternal transmission act in the same direction. As for hosts, maternal transmission eliminates coevolutionary cycles, thereby reducing selection for increased mutation. Unlike for hosts, however, maternal transmission additionally selects against higher mutation by favouring parasite offspring that are the same as their mothers.
منابع مشابه
The coevolutionary dynamics of antagonistic interactions mediated by quantitative traits with evolving variances.
Quantitative traits frequently mediate coevolutionary interactions between predator and prey or parasite and host. Previous efforts to understand and predict the coevolutionary dynamics of these interactions have generally assumed that standing genetic variation is fixed or absent altogether. We develop a genetically explicit model of coevolution that bridges the gap between these approaches by...
متن کاملRapidly fluctuating environments constrain coevolutionary arms races by impeding selective sweeps
Although pervasive, the impact of temporal environmental heterogeneity on coevolutionary processes is poorly understood. Productivity is a key temporally heterogeneous variable, and increasing productivity has been shown to increase rates of antagonistic arms race coevolution, and lead to the evolution of more broadly resistant hosts and more broadly infectious parasites. We investigated the ef...
متن کاملOptimum Pareto design of vehicle vibration model excited by non-stationary random road using multi-objective differential evolution algorithm with dynamically adaptable mutation factor
In this paper, a new version of multi-objective differential evolution with dynamically adaptable mutation factor is used for Pareto optimization of a 5-degree of freedom vehicle vibration model excited by non-stationary random road profile. In this way, non-dominated sorting algorithm and crowding distance criterion have been combined to differential evolution with fuzzified mutation in order ...
متن کاملHost population bottlenecks drive parasite extinction during antagonistic coevolution
Host-parasite interactions are often characterized by large fluctuations in host population size, and we investigated how such host bottlenecks affected coevolution between a bacterium and a virus. Previous theory suggests that host bottlenecks should provide parasites with an evolutionary advantage, but instead we found that phages were rapidly driven to extinction when coevolving with hosts e...
متن کاملCoevolution of parasite virulence and host mating strategies.
Parasites are thought to play an important role in sexual selection and the evolution of mating strategies, which in turn are likely to be critical to the transmission and therefore the evolution of parasites. Despite this clear interdependence we have little understanding of parasite-mediated sexual selection in the context of reciprocal parasite evolution. Here we develop a general coevolutio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. Biological sciences
دوره 280 1761 شماره
صفحات -
تاریخ انتشار 2013